Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
fabricademy2017:students:julie.taris:class10-implication-applications [2018/06/25 18:11]
julie_taris
fabricademy2017:students:julie.taris:class10-implication-applications [2018/06/25 18:13]
julie_taris
Line 61: Line 61:
 #################################################################################################################### ​ #################################################################################################################### ​
  
-Flat-pack physics+==Flat-pack physics==
  
 From solar panels to nanoscale machines, physics applications of origami and kirigami have surged in recent years From solar panels to nanoscale machines, physics applications of origami and kirigami have surged in recent years
Line 86: Line 86:
 #################################################################################################################### ​ #################################################################################################################### ​
  
-Fluid-driven origami-inspired artificial muscles+==Fluid-driven origami-inspired artificial muscles==
  
 “Artificial muscles are flexible actuators with capabilities similar to, or even beyond, natural muscles. They have been widely used in many applications as alternatives to more traditional rigid electromagnetic motors. Numerous studies focus on rapid design and low-cost fabrication of artificial muscles with customized performances.” “Artificial muscles are flexible actuators with capabilities similar to, or even beyond, natural muscles. They have been widely used in many applications as alternatives to more traditional rigid electromagnetic motors. Numerous studies focus on rapid design and low-cost fabrication of artificial muscles with customized performances.”
Line 101: Line 101:
 #################################################################################################################### ​ #################################################################################################################### ​
  
-AeroMorph - Heat-sealing Inflatable Shape-change Materials +==AeroMorph - Heat-sealing Inflatable Shape-change Materials 
-for Interaction Design+for Interaction Design==
 Author Keywords Author Keywords
 shape-changing interfaces; textile; pneumatic; bending shape-changing interfaces; textile; pneumatic; bending
Line 110: Line 110:
 Customized aeroMorph offers a variety of design options for creating shape-changing structures as seen in Figure 2. The basic shape-change element is angular folding, which can be aggregated into curling and twisting. ​ Customized aeroMorph offers a variety of design options for creating shape-changing structures as seen in Figure 2. The basic shape-change element is angular folding, which can be aggregated into curling and twisting. ​
 Designers are also able to create double curved surfaces by selective sealing from both sides. Micro airbags can be fabricated with extensible materials to create surface texture change for haptic sensations. Finally, by arranging the folding directions and angles, designers can create sophisticated origami-like,​ self-assembling structures. Designers are also able to create double curved surfaces by selective sealing from both sides. Micro airbags can be fabricated with extensible materials to create surface texture change for haptic sensations. Finally, by arranging the folding directions and angles, designers can create sophisticated origami-like,​ self-assembling structures.
 +#################################################################################################################### ​
  
 ==**Concept**== ==**Concept**==